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Coarse-grained properties of three-dimensional Ising systems 
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Department of Physics, University of Edinburgh, UK 

Received 16 July 1984 

Abstract. The universal coarse-grained properties of three-dimensional Ising systems are 
investigated with the aid of Wilson’s recursion formula. The Helmholtz function is obtained 
in the critical regions both above and below the critical point; the coarse-grained free 
energy functional, believed to control spinodal decomposition, is also determined. The 
crossover from non-Gaussian (critical) to Gaussian (central limit) behaviour in the coarse- 
grained-coordinate distribution is investigated in both high- and low-temperature phases. 

1. Introduction 

It is now generally appreciated that the universal features of the behaviour displayed 
by a system near its critical point reflect a deeper universality in the spectrum of 
configurations formed by the system coordinates, coarse-grained to eliminate system- 
specific microscopic details. The seeds of this perception are to be found in the key 
papers developing the renormalisation group method (Kadanoff 1966, Wilson 197 1) ; 
indeed, the idea is implicit, and apparent to varying degrees, in all the variants of this 
technique which have since been developed. In recent years the idea has found more 
explicit recognition in a number of studies focussing directly on the coarse-grained 
configuration spectrum. Particular attention has been given to two interrelated quan- 
tities: the coarse-grained-coordinate probability density function and the coarse-grained 
Helmholtz functional. 

It is with these functions that we will be principally concerned in this paper. We 
shall restrict our attention to the Ising universality class in space dimension d = 3 ; the 
relevant ordering coordinates may thus be defined by a scalar field which we shall 
denote by { u ( x ) } .  By ‘coarse-grained coordinate’ we shall mean the field {u,,(x)} 
obtained by eliminating from { u ( x ) }  those Fourier components associated with 
wavevectors larger than a cut-off A. Physically the coordinate u,,(x) represents the 
spatial average of the local field over a ‘block’ of linear dimension -A-’  centred on 
the point x;  we shall refer, loosely, to the set {u, , (x)}  as ‘block’ coordinates. 

The block coordinate probability density function (PDF), PA( u, , (x ) ) ,  is of interest 
at formal, conceptual and practical levels. Its formal properties and significance have 
been explored by a number of authors (Cassandro and Jona-Lasinio 1978, and referen- 
ces therein). For block sizes A-’ large compared to t, the system correlation length, 
the PDF is Gaussian (Baker and Krinsky 1976) with a mean which is a measure of the 
equilibrium order parameter and a variance proportional to the associated susceptibil- 
ity. For block sizes A-’ small compared to the distribution is, in general, expected 
to be non-Gaussian (Gallavotti and Martin Lof, 1975). The existence of such non- 
Gaussian limiting forms is at the heart of an appealing probability-based view of the 
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renormalisation group, advanced by Jona-Lasinio (1975). In a subsequent series of 
studies (Bruce et a1 1979, Bruce 1981a) the universality of the block coordinate PDF 
was established (for A-'  and large compared to microscopic lengths) and the form 
of the distribution determined exactly in d = 1 (for arbitrary A t ) ,  and approximately 
in dimensions d = 2 and 3 in the region A-' << 6, using the recursion-formula realisation 
of the renormalisation group due to Wilson (1971). These studies emphasise the 
conceptual value of the distributions which lie in their capacity to illuminate the nature 
of the configurational building blocks appropriate to a universality class. Finally, at 
a more immediately practical level Binder (1981; see also Binder and Landau 1984) 
has shown how the distributions and their moments may be analysed to yield critical 
indices and locate critical points and phase boundaries. Although this approach makes 
no explicit recourse to renormalisation group formalism it has much in common with 
the Monte Carlo renormalisation group methods pioneered by Swendsen (1982) and, 
like the latter, has clear cut advantages over the conventional analysis of Monte Carlo 
data, which may be traced to the use which it makes of the multiple-local-coordinate 
correlation functions implicit in the block coordinate distributions. 

The coarse-grained Helmholtz functional ( CGHF),  FA( { U*( x)}) ,  is intimately related 
to the coarse-grained coordinate PDF. Whereas the latter is the generating function 
for configurations of a single block coordinate u,,(x), the former defines (is the 
configurational energy for) a coarse-grained representation of the partition function 
which is the generating function for the configurations of the entire block coordinate 
field { u, , (x ) } .  The CGHF assumes two particularly familiar limiting forms. In the regime 
A-'  >> the function F,, effectively prescribes the true ('thermodynamic') Helmholtz 
function; on the other hand, in the regime A-'<< (but with A-'  still large compared 
to microscopic length scales) the CGHF is simply related to the fixed point 'Hamiltonian' 
of the (momentum-space) renormalisation group transformation (Wilson and Kogut 
1974). There is, however, a further intermediate regime, which has attracted attention 
and which will be of particular interest here: the CGHF evaluated below the critical 
point for A t  equal to (or of the order of) unity is believed to define a configurational 
energy which controls the time-evolution of the large-scale structures involved in 
spinodal decomposition (Langer 1974). Indeed, the form of this function is an essential 
ingredient of the theory of this process developed by Langer et al (1975). In the latter 
studies the authors made the (then) reasonable assumption that the relevant CGHF 

might be represented by a Landau Ginzburg form; deficiencies of the theory which 
could be attributed to the inadequacy of this parameterisation were noted. Subsequently 
Kawasaki et a1 (1981) calculated the form of the CGHF (in d = 3)  within a renormalisa- 
tion group framework, utilising a perturbation expansion to first order in E = 4 - d. 
Most recently Kaski et a1 (1984) have attempted to identify this function on the basis 
of Monte Carlo studies of the block coordinate configurations whose spectrum it 
controls. 

In this paper we extend this programme of studies in a number of directions. We 
present the results of a variety of calculations based on Wilson's (1971) recursion 
formula. The recursion formula has long been known to yield reasonable values for 
d = 3 critical indices. The remarkable agreement between the recursion-formula-based 
calculations of the block distribution function (in the A-'<< 6 limit) reported by Bruce 
et al (1979) and the results of Monte Carlo simulation (Binder 1981) lead us to believe 
that the recursion formula also generates a perhaps surprisingly faithful representation 
of other universal characteristics of the coarse-grained configuration spectrum. In Q 2 
we recall the recursion formula explicitly, study its properties in the critical region 
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both above and below the critical point and explore its implications for critical point 
amplitude ratios The latter calculations serve two useful functions. Firstly they offer 
a further check on the capacities of the recursion formula: we find, in particular, that 
it predicts the susceptibility amplitude ratio with modest success. Secondly they enable 
us to parameterise the theory so that it is consistent with the known value of the 
universal amplitude combination connecting thermodynamic properties with the corre- 
lation length (Stauffer et al 1972), which is not unambiguously prescribed within the 
recursion formula framework. In § 3 we proceed to determine the Helmholtz free 
energy in both high- and low-temperature phases: we find that the recursion formula 
yields the anticipated convex structure although the predicted ‘finite-size’ corrections 
to the limiting form (in the low-temperature phase) are, we shall see erroneous. We 
then establish the form of the CGHF for A ( =  1, T <  T,, and compare the result with 
the simple form assumed by Langer er al (1975) and the  form calculated by Kawasaki 
et a1 (1981): there are marked differences at both quantitative and qualitative levels. 
In 0 4 we turn to the block PDF. We extend the analysis reported previously (Bruce 
1981a) which was confined to the regime A-’<< (; we calculate the PDF for a range of 
A& values both above and below the critical point, thus interpolating between the 
non-Gaussian form and the (two) Gaussian limits. In addition to their conceptual 
value, these results have potentially observable implications for scattering studies of 
critical point fluctuations ; these we discuss briefly. 

2. Recursion formula studies 

2. I .  The recursioii formula 

We begin by reviewing briefly the arguments leading to the approximate recursion 
formula, emphasising those aspects of its derivation which will prove important in our 
subsequent studies. 

Consider the partition function of a d = 3 scalar model belonging to the Ising 
universality class. The partition function is defined by a functional integral over a 
Boltzmann weight prescribed by a configurational energy (‘Hamiltonian’) which we 
write in the form 

(2.1) 2 o -  -a--’ ddx(Q-2(Vu(x))2-t- V o ( u ( x ) ) ) .  

This form is chosen for convenience; the parameters R and Q will be defined below. 
Any scalar continuum model can be written in this form simply by a suitable choice 
of scales for the ordering and spatial coordinates. In the representation (2.1) the field 
u ( x )  is presumed to have a Fourier decomposition which includes only modes of 
wavevectors 141 < A. The recursion formula describes a mode-decimation operation 
whereby Fourier components with wavevectors ( q (  > +A are integrated from the partition 
function. Thus, writing u ( x )  = u , ( x ) +  u , ( x ) ,  where U <  contains fluctuations with 
wavevectors less than $A and U, incorporates the remaining fluctuations with wavevec- 
tors intermediate between +A and A we perform the functional integral on U, to obtain 
an effective Hamiltonian E for U,. If we neglect the term independent of U <  in E then 
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where 

I Du, exp[-R-l Iddx{q-2(Vu,)2+ Vo(u,+ U,))] 

[ Du, exp[-R-’ jddx{4-2(Vu,)2+ Vo(u,)}] 
’ I ,  = Ii({u<}) = -In (2.3) 

In order to cast the function I ,  in a tractable form the recursion formula makes certain 
simplifying approximations. There are two equivalent approaches to understand these 
approximations-we can argue either in momentum space or in position space. The 
position space or ‘phase cell’ approach is due to Wilson (1971); a pedagogical derivation 
can be found in Ma (1976). The alternative approach is due to Polyakov (unpublished) 
and is presented by Wilson and Kogut (1974). We now briefly outline this approach. 
It is possible to set up a perturbative expansion of the right-hand side of equation 
(2.3). The denominator removes all the graphs without any external lines (‘vacuum 
to vacuum’ graphs) and the logarithm removes all the disconnected graphs. 

To evaluate the remaining graphs we have to make some simplifications. Of these 
we need recall here only the key rule defining the approximation within which integrals 
over ‘internal’ momenta (necessarily in the range between f A  and A) are evaluated. 
According to this rule all factors of momentum-squared appearing in such integrals 
are replaced by an ‘average’, q2.  The remaining trivial integral ( 2 ~ ) - ~  ddq 
then defines a constant which we denote by a-’. These statements are to be regarded 
as the definitions of the parameters R and q2 (which appear in (2.1)). Specifically we 
note that 

d ( 2 7 ~ ) ~ 2 ~  K d  a =  
s d ( 2 d  - 1) 

( 2 . 4 ~ )  

which for d = 3 reduces to 

(2.46) 2 -3 ~ T A  . 
The parameter q2 is less unambiguously defined. One might take as the defining 
relation either 

or 

(2.56) 

This is an ambiguity to which we shall return. For the moment we note simply that, 
given these approximations, the perturbative expansion may be resummed to give 

Substituting this result into equation (2.2) we have that 

%({U,}) = R-’ ddx{q-’(Vu,)’+ V’(u,)} I 
where 

V‘( U )  = -In{ I (  u ) / I ( O ) ]  

( 2 . 7 ~ )  

(2.76) 
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and 
m 

I (  U )  = dy exp[-y2 -;V,(y + U )  -;Vo(y - U)]. ( 2 . 7 ~ )  

To complete the renormalisation group transformation it is convenient to rescale 
U, and x (in X ' )  in such a way that the configurational energy expressed in terms of 
the rescaled coordinates, XI, has the same form as the initial Hamiltonian Xo (2.1). 
Explicitly we define 

x' x/ b ; b = 2  (2 .8a )  

(2.8 b )  U'= a - ! & ;  a = b  . 
Then, dropping the redundant primes, the coarse-grained configurational energy can 
be written as 

L 

I - d / 2  

XI =a-' ddx{q-2(Vu(x))2+ Vl(u(x))} (2.9) 

v,(u)  = -2d ln(I(au)/I(O)).  (2.10) 

I 
where 

Equations (2.7) through (2.10) define the recursion formula: iterating the procedure 
defined by these equations generates a sequence of potentials VI( I = 1,2 . . .) defining 
configurational energies Xi containing fluctuations of maximum wavevector A/2'. 

2.2. Evolution of the potentials V 

We have seen that, under the action of the recursion formula, the interaction (gradient 
term) in the effective Hamiltonian is invariant, while the potential evolves according 
to (2.10). In order to investigate the implications of the formula we have to specify 
the initial potential Vo. According to the conventional doctrine of universality the 
essential characteristics of the critical point behaviour should be independent of the 
specific parameterisation we choose. There is substantial supporting evidence for this 
viewpoint (see for example Nickel 1982) although the issue has not been conclusively 
settled (see for example Freedman and Baker 1982). Here we shall presuppose the 
conventional view and choose the specific (convenient) parameterisation 

v0(u) = rou2+gou4;  0 - 2  -I (2.1 1)  

where ro is a parameter which is taken to be an analytic function of temperature. 
We proceed now to discuss the evolution of the potentials V, for different values 

of the temperature (i.e. ro). By symmetry we need only keep track of &(U) for U > 0. 
The iterates become sufficiently complicated after one iteration to prevent an analytic 
study of the recursion formula. Instead we have to use appropriate numerical tech- 
niques. It will, however, prove helpful to record, first, one specific analytic implication 
of (2.10). Suppose, in particular that Vj has a 'sharp' minimum at U/ so that near ui 

(2.12) 

with m: large. Then for au - U/ a steepest descent analysis of equation (2.10) yields 
(Golner 1973a) 

V , , , ( U ) = ~ ~ V , ( U ~ ) + ~ ~ : ( ~ - ~ - ' U ~ ) ~ + C  (2.13) 

VI( U )  = v,( U/) + m:( u - u1)2 
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-1 0 

where 

, , , , , , , , , , 

C = -2d In( dy e-m;’’2/I(0)). (2.14) 

To summarise equation (2.13) we note that if a deep minimum exits in VI then a deep 
minimum is always present in later iterations of the potential and the position of the 
minimum moves out by a factor a-’ = 2”* each successive iteration. We also note that 
the corresponding mass term at a deep minimum of the potential is increased by a 
factor of 4 on each successive iteration (i.e. m?+, =4m;).  

The (critical) fixed point of the recursion formula is obtained by locating the critical 
value, roo of the parameter ro such that, after a few iterations, the sequence of the 
potentials VI settles to a ‘stable’ (1-independent) form V*; the closer ro is to the ‘true’ 
value of roc the larger is the number of iterations over which the potential is stable 
and the closer is the observed potential (in this regime) to the ‘true’ fixed point potential. 
With the specific numerical techniques we have adopted we find roc = roc (go=  i) = 
- 1.666 8606 , . . ; the associated fixed point potential is displayed in figure 1, reproducing 
Wilson’s (197 1) original result. 

Now consider the situation where ro is close to but actually larger than roc Initial!y 
V, converges to V*. For large enough 1 values, however, VI e’volves away from V* 
(figure 2) into a ‘Gaussian’ regime where the origin is the sole minimum, and is ‘sharp’ 
(in the sense of (2.12)). Then, in these conditions ( r o >  roc, l+oo) ,  we may write 

v,(u) =4‘m2u2 (2.15) 

for the (small) range of U-values which contribute significantly to ensemble averages 
calculated with XI. This limiting behaviour (and, in particular, the value of the 
parameter m2 which it defines) will be exploited in the following subsection. 

Now suppose that the chosen value of ro is slightly less than roc. Then, beyond the 
regime where VI - V*, instead of crossing over into the regime where the origin is the 
only minimum, the iterates always have other deeper minima. Initially the origin is a 
maximum and there are only two minima at *u I .  The value of ul,and the depth of the 

2 21 , 

1.4- 

i 

-1 0 I-_ 
10 2.0 

U 

Figure 1. The fixed point potential. Figure 2. The large I behaviour of V,( U )  for 7 > 7,. 



Coarse-grained properties of 30 Ising systems 595 

minima below the origin slowly increase until we arrive at the situation depicted in 
figure 3 ( a ) .  In this figure V, has a sufficiently deep minimum that it forces the origin 
of the next iterate to be a local minimum also. Subsequently the iterates become very 
peaked as originally noted by Wilson (1971).  Figure 3 ( b )  illustrates the result obtained 
by carrying out the next iteration. Once the iterates have crossed over into the many 
minima regime then with each successive iteration all the minima move outwards by 
a factor a-' and the minima become sharper. It also transpires that the number of 
minima increases: if V, has n ( > 2 )  minima then V,+, has (2n - 1 )  minima. We also 
note that, with each iteration, the depth of the lowest minimum below the origin 
increases and between the origin and the lowest minimum the maximum height attained 
by V, increases. It is only possible to carry out a small number of further iterations, 
once the multiple peaks have appeared, before the computational time required to 
obtain the next iterate becomes quite substantial. 

U U 

Figure 3. The large I behaviour of V,(u) for T <  T,. (a )  Stage 1 ,  ( b )  stage 2. 

The essential features of the behaviour noted above and displayed in figures 3( a, b )  
can readily be understood analytically. Consider, in particular, the character of the 
deepest minimum, U', in V,. Exploiting (2.13) and assuming that the integral I ( 0 )  in 
(2.14) will be dominated by the symmetry related minima at *U, we find that near the 
deepest minimum U'+, of the potential V,+lr  

(2.16) 

Recalling that u ! + ~  = 21'2u, we see that this result implies that (in the I +  CO limit, for 
ro< roc)  the behaviour of the renormalised potential may be written as 

v , + , ( u )  = -4u:+, +4m:(u - u,+,)~. 

V,( U )  = -2'+2M: + 4'm2( U - 2''2Ms)2 (2.17) 

for U-values which are sufficiently close to the minimum of V, to contribute significantly 
to averages evaluated in the ensemble prescribed by X'. The thermodynamic signific- 
ance of the parameters M y  and m2 defined by (2.17) will be developed in the next 
section. We defer to 0 3.1 a discussion of the physically pathological proliferation of 



596 S A Newlove and A D Bruce 

minima in the potential iterates, for large I :  this behaviour manifests itself in incorrect 
predictions for finite size corrections to the Helmholtz function in the ordered phase. 

2.3. Universal amplitude ratios 

The results summarised in the preceding section have immediate implications for three 
key observables: the order parameter (spontaneous magnetisation) M, the associated 
susceptibility x and the correlation length 6. 

Consider first the order parameter 

M = lim lim V-' J ddx(u(x)) 
h-O+ V-rm 

(2.18) 

when V = 5 ddx is the system volume and h is the field conjugate to the order parameter. 
Recalling the scale transformations introduced in (2.8) we see that 

M = 2-'/2Ml (2.19) 

where MI is the order parameter for the system defined by the renormalised Hamiltonian 
XI. For T >  T, (ro> roc) of course MI vanishes identically (c.f. the behaviour of VI 
depicted in figure 2). For T < T, ( ro < roc) ,  however, it is clear physically that MI will 
coincide with the deepest minimum U = +ul of the potential VI, the positive minimum 
being singled out by the (renormalised) field hl inherent in the strategy by which the 
order parameter is defined. Recalling the behaviour (2.17) we conclude that, in zero field 

M = M , .  (2.20) 

To determine the susceptibility and correlation length we consider the propagator 

g(q)  = J- ddx{(u(0)u(x)) - ( u ( O ) ) ( u ( x ) ) }  exp(iq * x)  (2.21) 

in terms of which we may make the identifications 

x = g ( q  = 0) (2.22a) 

t2=  -(d/dq2) In g(q)l,=o (2.22b) 

the latter relationship defining the second moment correlation length (see e.g. Tarko 
and Fisher 1975). Recalling, once again, the transformations (2.8) we see that, provided 

g(q) = 221gl(21q). (2.23) 

To determine gl  we may formally envisage setting up a loop expansion about the 
deepest minimum in V,. For large 1 we may neglect,corrections to the leading (Gaussian) 
behaviour finding simply that 

gl(q) = n/2(q-'q2+4'm2) (2.24) 

4 < A/2', 

from which, invoking (2.22), (2.23) we find immediately 

x = R/2m2, (=(qm)- ' .  (2.25a, b )  
By determining the values of m and M, corresponding to various values of 6r = ro - roc 
we can, then, with the aid of these results, determine the indices and amplitudes 
characterising the power law behaviour of x, 6 and M as functions of the 'reduced 
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temperature’ Sr. In practice we used ro values such that [Sri z s  5 x lo-’. The key results 
are 

(2.26a) 2p = 4~ = v = 0.609 * 0.001 

and 

(f+/ f - ) 2  = C + /  C- = 5.3 *0.1. (2.266) 

The relationships amongst the indices in (2.26a), and the link (2.266) between the 
amplitude ratio for the correlation length (f+/ f-) and that associated with the suscepti- 
bility (C+/ C-) are corollaries of the ‘7  = 0’ approximation inherent in the recursion 
formula (in the form used here; cf Golner 1973b). The result for the index v merely 
reproduces that reported by Wilson (1971). The result for the ratio C+/C- is, to our 
knowledge, new. The reliability of the two predictions’is comparable: the best estimates 
currently available give v = 0.629 (see e.g. Pawley et a1 1984) and C+/  C- = 5.06 (Tarko 
and Fisher 1975). 

There is one further critical amplitude combination which is, in principle, prescribed 
by our results. This is the combination which relates the scales of the thermodynamic 
variables (x and M )  to that of the correlation length (Stauffer et al 1972, Bervillier 
1976). It may be defined by 

S =  f : B 2 / C +  (2.27) 

where B is the amplitude associated with the order parameter power law. In contrast 
to the susceptibility amplitude ratio this combination involves the parameters R and 
4. Specifically we find from the numerical studies 

S = 1 1.55(Rq3)-’. (2.28) 

The parameter R is prescribed by (2.46). However, as noted in § 2.1 the parameter 4 
is less clearly defined: (2.5a), gives 4 = 0.815A while (2.56) gives 4 = 0.764A. In the 
light of this ambiguity we choose to adopt a different strategy. We forego the attempt 
to determine the universal quantity S ;  instead we exploit (2.28) together with the best 
available independent estimate of S to assign a value to the parameter 4. In tuning 
the link between thermodynamic and correlation length scales in this fashion we hope 
to enhance the reliability of our calculation of the CGHF ( §  3.2), in which this link 
plays a crucial role. Specifically, then, utilising the series-based result (Tarko and 
Fisher 1975), S = 0.254 we find 

4 = 0.87511 (2.29) 

which may be compared, without too much embarrassment, with the possible a priori 
assignments indicated above. 

3. Mesoscopic and macroscopic free energies 

The ‘mesoscopic’ or ‘coarse-grained’ Helmholtz free energy functional is defined by 

(3. la)  

where the functional integral extends over the Fourier components of the field with 
wavevectors in the range A I  < / q /  < A .  The coarse-grained coordinates u,,,(x) thus 
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0 

0.56- 

P 
0.40- - 

5 
L .  

0 2 4 .  

contain only Fourier components with wavevectors (41 < A l .  Explicitly 

( U )  

I 
I i 

0 56 

8 1  ? I  

x 0401 c I 

, 

a/ 
0.24- 

i 1 1 

O , O * l  , , , , _p, , 

( 3 . l b )  

where the set { u ( q ) ;  /q1 < A} defines a complete Fourier representation of the ordering 
field u ( x ) .  

The recursion formula enables us to study these functions for values of A ,  of the 
form A ,  = A/2':  accordingly, to simplify the notation, we shall represent 
F,,,21({ U ,,21 (x)}) simply by F/(  U). To within configuration-independent (constant) 
terms which we shall not explore, the functionals Fl are simply related to the sequence 
of effective Hamiltonians XI. Specifically, recalling the scale transformations (2.8) we 
find 

F, = ddx{Q-'ij-'(Vu)'+fi(u)} ( 3 . 2 ~ )  i 
where 

f i (  U )  = a - ' 2 - d 1 V / ( a - ' u ) .  (3 .26)  

The ('thermodynamic') Helmholtz function is then prescribed by the limiting form of 
J ;  

f( M )  = lim Iim v-'F,( U = M )  = lim f i ( ~ ) .  
I-cc v + m  I - -  

(3 .3)  

Consider first the high-temperature phase, for which we will record simply the 
predictions for the Helmholtz function itself. Our recursion formula studies indicate 
that the limit prescribed in (3 .3)  is well defined, and that f ( M )  is a convex function 
with a single minimum at the origin; the form of f ( M )  for two different 6 values is 
shown in figure 4 ( a ) .  More explicitly we find by combining (2 .15) ,  ( 3 . 2 b )  and (3 .3)  
that, for small M,  
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implying 

x-' a2f( M ) / a M 2  = 2 m 2 0 - '  (3.4b) 

in accord with (2.25a). 
Now let us turn to the low-temperature phase. Here we shall be concerned not 

only with the thermodynamic limit (3.3), but also with the form of fi for finite 1. It 
will prove helpful to preface the presentation of our results for this regime with a brief 
discussion of the behaviour one might anticipate. 

We begin by noting that (to within configuration-independent terms) the function 
f i ( u )  may be regarded as the free energy density of a 'block' of side L -  2'/A. (Recall 
that the argument of the functionf; contains only Fourier components with wavevectors 
in the range q < A/2'.) Given this identification the structure offi( U )  may be anticipated 
on the basis of rather general if heuristic arguments (Binder 1981, 1982, Kaski et a1 
1984). Specifically for 1 sufficiently large that the 'block size' L is large compared to 
6 one may expect that the function f i ( u )  will have a double minimum structure 
expressing the dominance of single phase configurations. The principle characteristics 
of this structure are the position, the depth and the width (or sharpness) of the minimum. 

It is clear that the position of the minimum will approach the equilibrium zero field 
order parameter M, in the Z+co limit. One might expect that this approach will be 
made monotonically from above: the location of the minimum in the function fi( U )  
identifies the order parameter of a system in which a class of fluctuations (namely 
those with wavevectors of q < A/2') have not been taken into account: rather generally 
fluctuations act to reduce the order parameter; the above conclusion follows. 

The depth of the free energy minimum may be estimated on the basis of the 
observation (Binder 1981, 1982) that an ensemble in which a block has an order 
parameter XM, (- 1 < x < 1 ) will be dominated by heterophase configurations in which 
fractions f( 1 * x)  of the block have order parameters f M,. The difference between the 
free energy of such an ensemble and that of the single phase ensemble (realised in the 
limit of an infinitesimal ordering field) resides in the free energy of the interface 
separating the two single phase regions. The specific form of this interface will reflect 
the block boundary conditions. However, for values of 1x1 not too close to unity, its 
area must be of order L d - ' .  The depth of the minimum in the coarse grained free 
energy density will thus be of order 

Afi - L-d * L d - ' u  - uA/2'  (3.5) 

where U- & - ' d - l '  is the surface tension (free energy per unit interfacial area). 
The width of the minimum may be roughly characterised by identifying the value 

of U I  for which f i ( u )  - -2 AA. Invoking the expectation that the second derivative of 
f i ( u )  at its minimum will, for large 1, approach the inverse susceptibility x - l ,  we find 
that the value of U' thus prescribed differs from that locating the minimum by 

I 

Aul-   AX/^')"^. (3.6) 
Finally we remark that these observations serve to illuminate the structure antici- 

pated for the Helmholtz free energy itself (Griffiths 1967): specifically, the vanishing 
(in the 1+c0 limit) of the free energy density cost of the interfaces associated with 
heterophase configurations (3.5) implies a Helmholtz function which is flat in the 
regime - M ,  < M < M,. 

With these remarks in mind we now return to discuss the results yielded by the 
recursion formula in the ordered phase. We consider first the Helmholtz free energy. 
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Our  recursion formula studies indicate that the limit (3.3) does exist, and  that, moreover, 
it has the anticipated convex structure: the behaviour of f ( M )  for two different 5 
values is shown in figure 4(b). That the recursion formula does yield the correct 
(convex) structure in the 1 +a limit is a reflection of the fact that (in contrast to the 
majority of approximation schemes) it does, to a degree at least, incorporate the effects 
of heterophase configurations. It does not, however, treat these configurations faith- 
fully: its failure in this regard shows u p  in the manner in which the function fi 
approaches its /+a limit. Specifically, combining (2.17) and  (3.2b) we see that the 
depth of the (deepest) minimum in J; is of the form 

Afi-4MtrR-1/22'. (3.7) 

Thus, although the well depth vanishes in the 1 +CO limit it does so more rapidly than 
our  general arguments would suggest (cf (3.5)). This failure can be traced to the nature 
of the approximation within which the gradient (interaction) term in the Hamiltonian 
(2.1) is treated in the recursion formula framework. This approximation is formally 
expressed on the substitution of the mean-square momentum q2 in the internal lines 
associated with the various graphical contributions to the expansion of the functional 
integral (2.3) ; physically, it presupposes that the predominant spatial structure within 
a block (described by the coordinate U,) will be smooth and, in particular, will not 
occur on length scales small compared to the block size. In fact, this presupposition 
is clearly wrong in the limit of sufficiently large block size since the scale upon which 
the ultimately dominant intra-block structure will occur (the interfacial thickness) will 
actually be small on the scale of the block size. This same failure shows up  in a more 
immediately obvious way in the fact that, for large 1, the function fi( U), as calculated 
with the recursion formula, does not have a simple double-minimum form. The growing 
multiplicity of subsidiary (shallower) minima (shown in the large 1 behaviour of the 
potential V,: cf figure 3)  expresses the incapacity of the recursion formula to reflect 
faithfully the continuous spectrum of possible heterophase configurations. 

Notwithstanding these clear deficiencies the recursion formula results are certainly 
sensible in a number of respects. Firstly we find that the position of the dominant 
(deepest) minimum of J; does approach its large 1 limit from above. This behaviour 
has also been observed in recent Monte Carlo studies reported by Kaski er a1 (1984). 
Secondly the quantitatively resonable value which the recursion formula yields for the 
susceptibility amplitude ratio indicates that the curvature of the deepest minimum 
reflects reasonably well the curvature of the 'true' minimum: this correspondence 
suggests that, in fact, the renormalisation of the stucture of the deepest minimum by 
the heterophase fluctuations (erroneously characteristed by the recursion formula) is 
actually very small as, indeed, one would expect in view of the depth of the dominant 
minimum relative to the others. Finally, we note that the erroneous multiple-minimum 
structure begins to set in at values of 1 > 1, where 2'" > 25. It is thus not excessively 
optimistic to hope that the structure of f i ( u )  for 1 values less than 1, will be both 
qualitatively and quantitatively reasonable. It is specifically to this regime that we now 
turn. 

As noted in the introduction the CGHF for coarse graining lengths of the order of 
the correlation length has attracted particular attention in view of its potential relevance 
to the problem of spinodal decomposition. Specifically, within the framework 
developed by Langer et a1 (1975) and recently reviewed by Gunton et a1 (1983) the 
time evolution of the wavevector-dependent 'structure factor' (which appears to be 
the most experimentally accessible probe of the coarse-grained configurations) is 
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described by a set of dynamical equations for which the principal input is this CGHF. 

The specific form of the CGHF is thus of some interest. To facilitate comparison with 
earlier studies we follow Langer et a1 (1975), writing the CGHF in the form 

This scaling form should be appropriate in a region close enough to the critical point 
([ large compared to microscopic lengths) and  for large enough coarse graining lengths 
( I >  Io where lo is the first value of 1 for V* is a good approximation to V).  The 
parameter a gives a measure of the coarse-graining length and  is chosen to be (Langer 
et a1 1975) 

a = ( 6 5 ~ * ) ' ' ~ 2 ' / A .  (3.9) 

The function 4 is chosen to satisfy the normalisation conditions 

4(0,2'/A[) = 0: 4"(0,2'/A5) = -1. (3.10) 

These ccnventions ensure that the function 4 is universal and (in view of the 'two 
scale factor universality' discussed in 0 2.2) that c = c(2'/A[) is also universal. 

Utilising (3.8) through (3.10) together with our recursion formula calculations of 
fr we have determined the scaling function 4 f o r  a number of different values of the 
ratio 2'/A5. The results are shown in figure 5 ( a ) .  The specific case where the coarse- 
graining length is chosen to equal [ is characterised by the function 

The recursion formula result for this function is shown in figure 5 ( b ) ;  this result was 
obtained by choosing Sr = ro- roc such that 2'/A[ is unity for a particular 1. Figure 

Figure 5. The coarse grained free energy function ( a )  for a variety of coarse graining 
lengths: the values of 2'/A5 are: a, 1.64; b, 0.818; c, 0.409; d, 0.204: e, 0.102. ( b )  for a 
coarse graining length 2'/A = 6: f, Kawasaki et a /  (1981); g, Langer et a /  (1975); h, results 
from Wilson's approximate reecursion formula. 
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5( 6) also displays two previously proposed forms of this function. The form suggested 
by Langer et a1 (1975) is simply the Landau quartic form uniquely prescribed by the 
normalisation conditions (3.10) augmented by the Landau (mean field) requirement 
that 4 ' ( 1 ) = 0  (i.e. that the minimum of the CGHF coincides with the bulk order 
parameter). This ansatz lacks the higher-order powers of x which will certainly be 
present in general (as noted by Langer et a l )  and which show up clearly in the recursion 
formula result in the enhanced steepness of 4 ( x )  for large x. The result of Kawasaki 
et a1 (198 1 j was obtained on the basis of a renormalisatim group calculation utilising 
a perturbation expansion to first order in E = 4 - d. We note that this result has its 
minimum at a value of x < 1, which is at variance with the expectation (discussed 
earlier, and realised in our results: cf figures 5(a, b ) )  that the minimum in the CGHF 

should approach the equiiibrium magnetisation monotonically from above). It is 
possible that this anomaly (if, indeed, it is such) is a reflection of the breakdown of 
the O ( B )  renormalisation group equations which Kawasaki et ai (1981) note are clearly. 
evident at larger I-values. 

The values of the normalisation constant c* = c(2 ' /A5 = 1 )  also differ significantly 
in the three calculations. We find c*-3.5; Langer et a1 matched their CGHF to truly 
macroscopic data to find c* - 5.77, while Kawasaki er al report c* =4.14. 

Given the clear deficiencies of the large-1 behaviour of the recursion formula in 
the ordered phase we cannot be certain that the new result presented in figure 5 ( b )  
represents an improvement on its predecessors. However in the light of the qualitative 
deficiencies of the latter, identified above, and in view of the striking reliability of the 
recursion formula to describe configurations in the 2'/A5<< 1 limit (cf the discussion 
of the block PDF in § §  1 and 4) it seems not unreasonable to expect that it will in fact 
prove to be so. 

4. Probability density functions for coarse-grained coordinates 

4.1. Theoretical background 

In this section we turn to consider the manner in which the coarse-grained coordinates 
u, , , (x)  (3.1 b )  are distributed. Specifically we consider the probability density function 
P,,,, of a single coordinate U , , , ,  defined by 

This distribution reflects the effective local potential, f;, seen by the coarse-grained 
coordinates: however it is not simply prescribed by this potential, since the average 
(4.1) must be evaluated in the ensemble of interacting coarse-grained coordinates 
characterised by the full coarse-grained free energy functional (3.1 a) .  Though harder 
to calculate than the coarse-grained potential functions the coarse-grained probability 
density functions are potentially more interesting: specifically; they are directly observ- 
able in computer simulations, their moments define quantities which may be probed 
by scattering experiments, and their form expresses (to a degree that more conventional 
observables do  not) the nature of the coarse-grained configuration spectrum. 

The work we describe here represents an extension of earlier studies (Bruce et a1 
1979, Bruce 1981a, 1982) to which the reader is referred for a discussion of the original 
motivation underlying this programme, and for a fuller presentation of the relevant 
theory, which we present here in  summary form only. 
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We begin with a brief discussion of the moments of the PDF (4.1). The moments 
about the origin and about the mean are defined, respectively, by 

and 
DI 

M y ?  = 5 du(  u - M,)"P,,,( U). 
-m 

( 4 . 2 ~ )  

(4.2b) 

In writing (4.2b) we have explicitly recognised the equivalence of the mean of the 
distribution (4.1) (the first moment in the series ( 4 . 2 ~ ) )  and the equilibrium order 
parameter: 

M, = fi(') A i  (4.3) 

which holds independently of the coarse graining scale A l .  The variance of the 
distribution (the second moment in the sequence (4.26)) is directly related to the 
propagator (2.21): 

In the limit in which A 1 t  is small compared to unity we may replace g ( q )  in (4.4) by 
the macroscopic susceptibility x = g(0). Thus we identify 

The shape of the distribution (4.1) is succinctly characterised by the dimensionless 
parameter 

G A ,  [3( My,))* - M',4,)]/2( M',Z,))' (4.6) 

which ranges between the value G = 0 for a Gaussian distribution and G = 1 for a 
symmetric double 8-function distribution. The universal scaling properties of the PDF 

have been discussed in detail in earlier work (Bruce 1981a, Binder 1981). They may 
be summarised in the assertion that the PDF may be written in the form 

P A , ( U ) ~  a;:P*(ai:(u - M s ) ,  ( A i O - ' ) .  (4.7) 

This form presupposes values of A;' and 6 which are large compared to microscopic 
lengths. The scale factor a,,, is introduced to absorb the non-universality of the ordering 
coordinate scale. We adopt the convention that the scale factor should be such that 
the PDF P* has unit variance in the 'critical' ( A l t + m )  limit. With this (arbitrary) 
convention the functions P' and P -  (appropriate, respectively, in the T +  T,' limits) 
should be universal. Finally we remark that the factor of M, appearing in (4.7) is not 
strictly necessary: with the choice of scale factor U,, to be made below the combination 
M S / a A ,  could in fact be subsumed into the second argument of the function P-( U, z ) .  
The factor of M, is included explicitly for convenience: thus defined the function 
P - ( u ,  z )  has its maximum at a finite (zero!) value in both large and small z limits. 

Thus far the discussion has been very general. Now let us again revert to the 
recursion formula framework. In our earlier work (Bruce 1981a) it was shown that, 
within this framework, there exists a recurrence relationship between the PDFS for 
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coarse graining lengths A ,  = 1 l / 2 ~  and A ,  = A/2f+’. Specifically, denoting P,,,21 by Pf 
we have, in the present notation (note the difference between equation (3.16) and 
(2.3b) of Bruce 1981a) 

W 

d v PI+ 1 ( U) P,( CY -‘U, (Y ( U - U ) ) ( 4 . 8 ~ )  

where a is the scale factor prescribed in (2.8) while the conditional probability function 
P, is determined in terms of the renormalised potentials V, and Vf+,: 

5-, P / ( U )  = a- 

Before turning to the numerical exploration of these equations two further remarks 
are in order. 

The first remark concerns the critical limit, where A5/2’ >> 1 .  In this limit, where 
the renormalised potentials appearing in (4.8b) may be replaced by the fixed point 
form V*, one readily finds that (4.8a) is consistent with the scaling ansatz (4.7) provided 
one chooses the scale factor af = a,,, to be of the form 

af = a ~ ” ~ .  (4.9) 

Recalling (4.4), and the ‘7 = 0’ approximation inherent in the recursion formula one 
can easily check that this form is consistent with the requirement that the universal 
function (4.7) 

(4.10) 

has unit (/-independent) variance. 
The second remark concerns the limit A5/2‘<< 1, and is of a more technical nature. 

Consider specifically the T > T, situation; a similar analysis, with certain refinements, 
can be given in the ordered phase. For large 1 (cf (2.15)) the potential Vf is a quadratic 

P*( U )  = P*( U, 0) 

form and the distribution PI may be determined explicitly as the Gaussian 

~ [ ( u )  = ( 2 7 r ~ , ( m ) ) - ’ ”  exp{-u2/2w,(m)} (4.1 

where 

(4.1 b )  

Now the distribution Pf+ ,  ( U )  may be determined in two ways. Firstly it may be inferred 
directly from (4.11) as a Gaussian of variance Wf+,(m). Alternatively, it may be 
obtained from the integral equation (4.8). It transpires that the two determinations 
are in accord with one another only if the integral (4.11b) is evaluated in a fashion 
consistent with the approximations inherent in the recursion formula (cf P 2.1). The 
rules dictate (and consistency is assured by) the approximation 

(4.12) 

It is reassuring to note that, in the large 1 limit, (4.1 1 a )  and (4.12) imply for the variance 
of the distribution 4, 

Mi”= W / ( m )  z2-d’/2m2(1 - 2 - d ) = [ ( S d ( A / 2 f ) d / d ( 2 ~ ) d ] x  (4.13) 
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where, in the last step we have made use of ( 2 . 2 5 ~ )  and ( 2 . 4 ~ ) .  Equation (4.13) is 
clearly in accord with the expectation (4.5). 

4.2. Results 

When taken in conjunction with the recursion formula itself, ( 4 . 8 ~ )  and (4.8b) define 
a closed recurrence relation prescribing the PDF for blocks of scale size 2'+'/A in terms 
of the PDF for blocks of scale size 2'/A. In our earlier study of this problem (Bruce 
1981a) these equations were solved to give the fixed point distribution P* (4.10) 
describing the form of the block PDF in the limit in which 2'/A<< 6 (with 1, nevertheless, 
large). The form of P* obtained (in d = 3) is reproduced in figure 6 as a benchmark 
for the further results to be presented below. The non-Gaussian character of the 
distribution is reflected in the value of the associated cumulant ratio (4.6) 

G* = lim G,=0.33. 
2'1 A 5 + 0 

0 30 h 

(4.14) 

1 0  2 0  
U 

Figure 6. The universal distribution P *( U )  _= P *(U, 0). 

Subsequent Monte Carlo calculations by Binder (1981) proved to be in excellent accord 
with these results, yielding in particular G* = 0.32 * 0.02. This accord strongly substanti- 
ates the claimed universality of the distributions: the Monte Carlo study was based 
on a nearest-neighbour fixed-length-coordinate Ising model, in contrast to the con- 
tinuous coordinate model ((2.1), (2.11)) underlying the results shown in figure 6. The 
level of accord also seems to indicate a surprising insensitivity of the results to the 
specific way in which the coarse-grained coordinates are defined: the Monte Carlo 
study utilised block cordinates defined, in the original Kadanoff fashion, with a direct 
space cut off (i.e. as in equation ( 2 . 3 ~ )  of Bruce 1981a) in contrast to the reciprocal 
space cut off (cf (3.lb)) employed in our renormalisation group studies. Although the 
limiting PDF is (given the coordinate scaling (4.9)) expected to be independent of the 
length-scale of the coarse graining (i.e. the block size or inverse cut off 2'/A) there is 
no reason, a priori, to expect such independence of the form of coarse graining. 
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The fixed point from P* describes the block coordinate distribution only in the 
limit in which the block size is small compared to the correlation length. When the 
block size is large compared to the correlation length the block distribution is widely 
expected to be Gaussian (see e.g. Cassandro and Jona-Lasinio 1978). In what follows 
we examine the crossouer behaviour whose occurrence is implied by these remarks. 

To define our strategy, consider first the situation where the temperature is close 
to but above its critical value (i.e. 6r = ro- roc is small and  positive). In this case the 
renormalised potential VI evolves from its (non-universal) local form Vo, though a 
regime where it lies close to the fixed point potential V*, and ultimately into a regime 
where it has a single minimum, with the quadratic form (2.15). In this regime the 
distribution is clearly Gaussian, with the explicit form prescribed in (4.1 1). Given this 
large 1 limiting form, together with the sequence of potentials VI, the recurrence relation 
(4.8a) may be used to determine the sequence of distributions PI (for the chosen 6 r ) .  
A check on the consistency of this procedure is afforded by the requirement that the 
sequence of distributions which it yields should be insensitive to the particular ('large') 
value of 1 at which the distribution is matched to the Gaussien form (4.1 1). 

We now discuss qualitatively the sequence of distributions PI which emerge from 
this procedure. The local distribution is prescribed by the local Hamiltonian and 
is, of course, non-universal: for the particular choice (2.11) (and ro> roc )  Po has a 
symmetric double-peaked form. As 1 increases to lo (where V, = V*) PI (niore precisely 
the distribution of the scaled variable ap,  with a, given by (4.9) and  a, prescribed by 
the unit variance condition) evolves to the form P* and remains close to this form for 
a range of 1 values. The closer the system is to criticality the larger is the range of 1 
values for which the block PDF remains close to P*. Eventually the distributions depart 
from the fixed point form and become progressively more Gaussian. 

This behaviour is expressed quantitatively in figures 7 ( a )  and 7(b).  Figure 7 ( a )  
shows the universal scaling function P + ( u ,  2'/A[) for a number of values of 2'/h[, in 
the regime ( I >  I,) in which the mapping to the universal form (4.7) is valid. The 
crossover between the critical ( P  *) and Gaussian forms is more explicitly expressed 

1 5 0 1  

0.3\ 

U 2' lA 5 

Figure 7. ( a )  The universal distribution P'(u, z )  for a number of values of z = 2'/.15: a, 
8.06 X b, 1.77 X I O - ' ;  c ,  3.55 X IO-'; d, 7.09 X I O - ' ;  e, 1.42; f, 2.84. ( b )  The cumulant 
ratio G as a function of 2'/115 for T <  7,. 
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in figure 7(b),  where we show the evolution of the cumulant ratio G (4.6) from its 
critical fixed point value (4.14) to its Gaussian limit, G = 0. 

Now let us consider the crossover behaviour occuring in the ordered phase. The 
strategy we adopt is similar to that discussed above. There are, however, two preliminary 
issues to be addressed. 

Firstly we must now consider carefully the boundary conditions for the calculation. 
We shall suppose that our system, of volume V, is subject to an  ordering field h with 
the ‘thermodynamic’ ( V -+ CO) and ‘infinitesimal field’ ( h  + Ot) limits taken in such a 
way that hVM, is large (on the scale of kBTc) .  As discussed by Binder and Landau 
(1984) the block PDF is then expected to converge, for large block size, to a single 
Gaussian centred on the order parameter M,. (If, in contrast, the limits are taken such 
that hVM, is small the block PDF is always a symmetric function, converging, for large 
block size, to two Gaussians centred on *M,.) Explicitly, then, with the stipulated 
(notional) boundary conditions, we impose the condition that the large 1 behaviour 
of P l ( u )  match on to a Gaussian of the form (4.1 l a ) ,  but centred on U = M,. 

Secondly we should recall at this point that in the Gaussian regime below T, the 
recursion formula is not wholly trustworthy. However, as we have seen, the results it 
yields do appear to be sensible as regards the position and curvature of the deepest 
minimum in the renormalised potential. Since the behaviour of P I ( u )  (for the larger 
values of 1 where the recursion formula is problematic) is dominated by this minimum, 
and by these characteristics in particular, we believe that the recursion formula results 
for PI should be not unreasonable in the ordered phase. 

Again we preface the detailed results with a brief discussion of their qualitative 
features. The local distribution function is only weakly sensitive to the system tem- 
perature: thus, for ro< roo PI=, has essentially the same the same (non-ufiiversal!) form 
as it does for r o b  roc. Strictly, of course, the ordered phase distribution is asymmetric: 
its first moment defines the order parameter M,. However, to the extent that ro is 
(arbitrarily) close to roc this first moment is (arbitrarily) small on the scale of the width 
of the distribution, and the asymmetry is not apparent. For roc - ro sufficiently small 
this statement remains true for the range of 1 values in which VI approaches and  
remains close to V*: thus, below the critical point, the distributions PI again coincide 
with the fixed point distribution P* for a range of 1-values. This observation is simply 
an  expression of the fact that P + ( u ,  z )  and F ( u ,  z i  have the same small z = 2 ’ / A 5  
limit (namely P * ( u ) ) .  For larger 1-values the distribution begins to depart from the 
fixed point form, the ratio of its width to its first moment ceases to be large and  its 
asymmetry sbout the origin begins to be discernible; at the same time its asymmetry 
about the order parameter begins to decrease as the distribution (by construction) 
converges on a single Gaussian centred on  M,. 

The (universal) aspects of these statements are expressed quantitatively in figures 
8 ( a )  and 8 ( b ) .  Figure 8 ( a )  shows the distribution P - ( u ,  z )  for a variety of values of 
z = 2’/A5. Note that (cf (4.7)) this function describes the deviation of the coarse- 
grained coordinate from its mean value, M,. Thus, for large z we see that P-( U, z )  is, 
correctly, centred on U = 0. For intermediate z, P-( U, z )  has its maximum at a finite 
positive value of U (reflecting the fact that the minimum in the coarse-grained free 
energy function f; approaches its large 1 limit from above). For small enough z (not 
shown in figure 8 ( a ) )  P-(  U, z )  will again be centred on U = 0. Figure 8 ( b )  shows the 
evolution froin critical to Gaussian behaviour as it is reflected in the parameter G and 
also in the analogous ratio 6 (defined as in (4.6), but in terms of the moments (4.2b) 
rather than ( 4 . 2 ~ ) ) .  
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Figure 8. ( a )  The universal distribution F ( u ,  z )  for a number of values of z = 2'/A$: a, 
5.13 x lo-*; b, 2.05 x IO-'; c, 8.21 x IO-'; d, 3.28. ( b )  The cumulant ratios G and G as 
functions of 2 ' /A5  for T <  T,. 

4.3. Discussion 

Finally we turn to discuss briefly some of the ways in which the results presented in 
the preceding section may illuminate, or be tested by, experiment. 

The experimental technique to which the coarse-grained PDFS are most immediately 
accessible is certainly computer simulation. Indeed, in a series of papers, Binder has 
shown how Monte Carlo studies of the distributions and their moments may be used 
to identify critical indices and locate critical points (Binder 1981; see also Barber et 
al 1984), measure the interfacial tension (Binder 1982) and  locate first-order phase 
boundaries (Binder and  Landau 1984). In the results presented in the first of these 
papers (Binder 1981) the crossover behaviour discussed in the preceding section is 
clearly evident. We cannot make a satisfactory quantitative comparison with these 
results since, as noted earlier, the two studies employ different coarse-graining pro- 
cedures. Although this difference appears to be unimportant in the critical limit (cf 
the accord on the form of P* noted above) it cannot be evaded in the crossover regime 
where the form of the PDF depends explicitly on the coarse-graining length or  'block 
size'. Nevertheless the results of the two studies are in accord as regards the-essential 
qualitative features of the distributions: the behaviour of the cumulant ratio G (figures 
7 ( b ) ,  8 ( b ) )  which Binder exploits to locate the critical point; the dependence upon 
coarse-graining length of the position of the maximum in P , ( u )  in the ordered phase 
(figure 8 ( a ) ) ;  and the character of the asymmetry of this function about its maximum. 

As regards experiments on real systems there are a number-of potential points of 
contact. Firstly we note (Bruce 1982) that the second moment MY: (2a )  of the coarse 
grained distribution &,(U) is directly measurable in a neutron or  x-ray scattering 
experiment: it represents the total (frequency-integrated) cross section in an  experiment 
whose resolution function (prescribing the range of wavevectors contributing to the 
observed intensity) is a sphere of radius A, centred on the condensing mode. To 
illustrate this point figure 9 shows the scattering intensity I (the second moment A??:) 
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Figure 9. The normalised scattering intensity crossover function as given ( a )  by the present 
calculation and ( b )  by Bruce (1981b). The reduced temperature is expressed in units 
defined in the text. The tempeature dependence of the cumulant ratio G is also shown. 

plotted as a function of reduced temperature t ;  the latter is measured in units of 
(f+AR)”’, where f+ is the amplitude of the correlation length for T >To and the 
intensity is normalised to unity at the critical point. With these conventions the cross 
section has a universal form. In the same figure we show the results of an earlier 
calculation of this scaling function (Bruce 1981 b) based upon an expansion in E = 4 - d. 
The level of agreement is not unreasonable given the different approximations inherent 
in the two calculations. We would not venture to anticipate which of the calulations 
is likely to prove the more reliable. The predictions are, however, testable by a suitable 
neutron scattering study (or, of course, by computer simulation). Indeed, recent 
neutron scattering studies of a d = 2 Ising antiferromagnet (Cowley et nl 1984) have 
already borne out one implication of the existence of such a universal scaling form, 
namely the unique relationship it prescribes between the scattering at reduced tem- 
peratures t and - r  (in the ‘good resolution’ limit, AR(<< 1). 

The non-Gaussian character of the critical fluctuation spectrum is of course implicit 
in the critical indices and thus in the temperature dependence of the scattering cross 
section shown in figure 9. Nevertheless, such experiments, in as much as they measured 
only the second moment of the coarse-grained PDF, are not explicitly sensitive to this 
non-Gaussian component, whose signature is the non-zero value of G, also displayed 
in figure 9. There are, however, two forms of scattering experiment which may be 
more informative in this regard. Firstly, it is conceivable that the time-dependence of 
the coarse grained coordinates, reflected in the frequency-dependent scattering cross 
section, may more fully reflect the character of the equilibrium distribution function. 
This possibility, touched on elsewhere (Bruce 1982) merits further study. Secondly it  
may be possible to devise a scattering experiment which measures the coarse-grained 
PDFS directly. One possibility is to study the distribution of the numbers of photons 
scattered from a critical volume of a fluid, in certain respects the cleanest realisation 
of the Ising universality class. This distribution should reflect the spectrum of density 
fluctuations within this volume, and can thus be related to the coarse-grained distribu- 
tions studied here. The possibility of such an experiment was considered some years 
ago (see e.g. Tartaglia and Chen 1973) and deemed to be at or beyond the limits of 
the technology then available. We believe that, given subsequent advances in experi- 
mental technique, and the motivation afforded by the specific theoretical predictions 
available here, the feasibility of such an experimental study merits fresh scrutiny. 
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